Chapter 14: Measurement: Volume and capacity

14A UNITS OF VOLUME

The **volume** of a solid is the amount of space it occupies. $1~\text{m}^3 = 1\,000\,000~\text{cm}^3$ $1~\text{cm}^3 = 1\,000~\text{mm}^3$ $\div 1\,000\,000$ $\div 1\,000$

- 1 Convert:
 - a $2.6 \text{ cm}^3 \text{ into mm}^3$

b $980\,000\,\text{cm}^3$ into m^3

c 0.051 m³ into cm³

d $62\,700\,000\,\mathrm{cm^3}$ into $\mathrm{m^3}$.

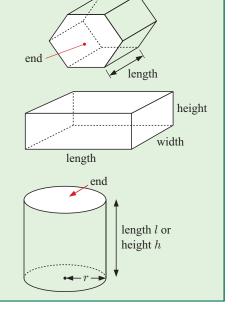
- **2** Write as a percentage:
 - a $1200 \text{ mm}^3 \text{ out of } 5 \text{ cm}^3$

b $75\,000\,\mathrm{cm^3}$ out of $1.5\,\mathrm{m^3}$

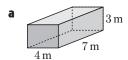
3 A sultana has volume approximately 1.1 cm³. Estimate the number of sultanas in a 1.65 m³ crate.

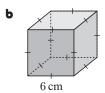
4 A ream of A4 copy paper contains 500 sheets. Given that the volume of one sheet of A4 paper is about 6.86 cm³, find the total volume of paper in a crate containing 500 reams of A4 paper in m³.

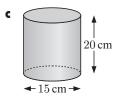
VOLUME OF A SOLID OF UNIFORM CROSS-SECTION

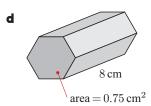

Volume of solid of uniform cross-section

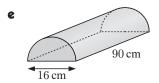
= area of end \times length


Volume of rectangular prism


 $= length \times width \times height$


Volume of **cylinder** $V = \pi r^2 l$ or $V = \pi r^2 h$




1 Find the volume of each solid:

