Chapter 14: Measurement: Volume and capacity

14A

The volume of a solid is the amount of space it occupies.

$$
1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}
$$

$1 \mathrm{~cm}^{3}=1000 \mathrm{~mm}^{3}$

1 Convert:
a $2.6 \mathrm{~cm}^{3}$ into mm^{3}
b $980000 \mathrm{~cm}^{3}$ into m^{3}
c $0.051 \mathrm{~m}^{3}$ into cm^{3}
d $62700000 \mathrm{~cm}^{3}$ into m^{3}.

2 Write as a percentage:
a $1200 \mathrm{~mm}^{3}$ out of $5 \mathrm{~cm}^{3}$
b $75000 \mathrm{~cm}^{3}$ out of $1.5 \mathrm{~m}^{3}$

3 A sultana has volume approximately $1.1 \mathrm{~cm}^{3}$. Estimate the number of sultanas in a $1.65 \mathrm{~m}^{3}$ crate.

4 A ream of A4 copy paper contains 500 sheets. Given that the volume of one sheet of A4 paper is about $6.86 \mathrm{~cm}^{3}$, find the total volume of paper in a crate containing 500 reams of A4 paper in m^{3}.

14B

Volume of solid of uniform cross-section
$=$ area of end \times length

Volume of rectangular prism
$=$ length \times width \times height

Volume of cylinder $V=\pi r^{2} l$

$$
\text { or } V=\pi r^{2} h
$$

1 Find the volume of each solid:
a

b

c

d

f

