Chapter 8: Lines and angles

8A

Revolution	Straight angle	Right angle
		$\frac{1}{2}$ turn $=180^{\circ}$

Acute angle	Obtuse angle	Reflex angle
Less than $\frac{1}{4}$ turn.	Between $\frac{1}{4}$ turn and $\frac{1}{2}$ turn. Between 0° and 90°.	Between $\frac{1}{2}$ turn and a complete turn. Between 90° and 180°.

Angles which add to 90° are called complementary angles.
Angles which add to 180° are called supplementary angles.

1 True or false?
a An angle measuring 42° is an acute angle.
b Half a revolution is a straight angle.
c A straight angle is neither an obtuse angle nor a reflex angle.

2 Name and classify each angle:
a

b

3 Find the angle which is complementary to:
a 31°
b 84°

4 Find the angle which is supplementary to:
a 13°

- Two lines in a plane are parallel if they never meet. We use arrowheads to show lines are parallel.

We use the symbol \| to mean "is parallel to".

(AB) \| (CD)

- Two lines in a plane are perpendicular if they intersect at right angles.

We use the symbol \perp to mean "is perpendicular to".

1 Use $\|$ or \perp to complete each statement:
a (PR) \square (TS)
b (PQ) \square (QS)
c (PT) \square (RS)
d
(TS)
\square (SQ)

8 C

ANGLE PROPERTIES

Title	Theorem
Angles at a point	Angles at a point add to 360°.
Angles on a straight line	Angles on a line are supplementary.
Angles in a right angle	Angles in a right angle are complementary.
Vertically opposite angles	Vertically opposite angles are equal in size.

1 Find the value of the unknown:
a

b

