Core Topics SL

This table records some of the elements of the Core Topics SL book which are particularly "IB", or which are interesting "features". They are definitely things to look out for, but please do not consider this an exhaustive list.

Page	Topic link	Subject link	International	Cultural link	Historic link	TOK link	Comments
			link				

Chapter 1: Straight lines

Exercise 1C q8	29	Voronoi			
		diagrams (A&I)			

Chapter 2: Sets and Venn diagrams

Opening Problem	40		Social studies	Global		Takes a familiar topic and encourages deeper analysis in the global context of the Human Development Index (HDI).
Theory of Knowledge	46-47	Proof by contradiction (A&A)			Proof	

Chapter 3: Surds and exponents

Opening Problem	64		Physics	England		Sir Joseph John	Nobel Prize winner in Physics 1906, subatomic particles.
						Thomson	
Investigation	65	Proof by equivalence (A&A)					
Exercise 3E q12	79-80		Astronomy				Astronomical distances
Discussion	80			Asia	Mahjong		

Chapter 4: Equations

Text	89	Proof (A&A)		Identifying errors in worked solutions has been shown to be an important tool for conceptual understanding.
Historical note	92		Europe, Middle East, India	The development of the quadratic formula.
Discussion	98		Technology	In a world of technology, there is still purpose to analytic methods and conceptual understanding.

Chapter 5: Sequences and series

Opening Problem	102	Middle East India	Legend, Chess	Ibn Khallikān		Famous problem
Theory of Knowledge	131-132				Proof	

	Page	Topic link	Subject link		Cultural link	Historic link	TOK link	Comments
				link				
Activity 3	138	Affine transformations (A&I)		Sweden		Helge von Koch		A&I students explore the generation of this curve as iterations of a set of affine transformations.
Theory of Knowledge	139			Germany		Leopold Kronecker	Infinity	

Chapter 6: Measurement

Project	163 Approximation	k Compares numerical methods for the approximation of a
	Estimation	real-world problem.
	(A&I), Modellin	g Highlights the importance of clearly defining and
	(A&I)	articulating the problem that is to be solved.
		Could also be done as the "inverted" problem of lakes.
		Possible Mathematics Exploration.

Chapter 7: Right angled triangle trigonometry

Theory of Knowledge	172-173		Astronomy	China		Li Chunfeng	Observation,
						_	belief, parallel
							subject
							development
Exercise 7E q25	190	Scientific	Astronomy	Prussia		Friedrich Wilhelm	1838 measurement of the parallax of the star 61 Cygni.
-		notation	-			Bessel	
Research	195		Physics	Global	Time		Possible Mathematics Exploration or Extended Essay.
Research	196		Astronomy	Global	Navigation	Hipparchus	Possible Mathematics Exploration or Extended Essay.

Chapter 8: Non-right angled triangle trigonometry

Cosine rule proof	208-209	Proof by exhaustion (A&A)				Most "proofs" of the cosine rule skip the comment about the acute angles in an obtuse angled triangle.
Investigation 1	212					Practical, hands-on investigation of the sine rule.
Exercise 8E q17	218					Combines real-world application and problem solving skills in a 3-dimensional problem.
Investigation 2	219					Practical, hands-on investigation of the ambiguous case of the sine rule.
Theory of Knowledge	221-222		Ancient Greece, India	Hipparchus	development, protection of	Explores motivations for subject development, and the place of historical work in the modern subject. Compares spherical and planar triangles. Why did a "flat Earth" theory persist for so long?

Chapter 9: Points in space

	Page	Topic link	Subject link	International Cultural link	Historic link	TOK link	Comments
				link			
Theory of Knowledge	234-235		Physics	Ancient	Euclid	Axioms,	Explores Euclid's postulates as a basis for planar
				Greece		definitions,	geometry.
						multi-	Poses serious questions about what we may consider as
						dimensional	intuitive, such as straightness and direction. This becomes
						space	necessary for exploring space-time as needed for
						-	advanced Physics.

Chapter 10: Probability

Opening Problem	240	Insurance					Real-world probability application
Investigation 1 Investigation 2	242 242-243						Practical, hands-on investigations. Understanding the role of experimental probability.
Activity	272		USA		Steve Selvin		The Monty Hall Problem is one of the best known mathematical paradoxes. This Activity uses tree diagrams to explore the paradox, giving deep understanding of Why the contestant should change their original guess.
Theory of Knowledge	276-277		Europe, USA	Ethics	Blaise Pascal, Pierre de Fermat, Agner Krarup Erlang, Edward Oakley Thorp	Mathematical intuition, decision making, ethics	

Chapter 11: Sampling and data

Discussion	289	Politics	United Kingdom, EU		Explores the mathematics of the "Brexit" referendum.
Theory of Knowledge	290	Medicine	Ethics	Ethics in research.	Applications in medical trials and social media.

Chapter 12: Statistics

Theory of Knowledge	312-313	Definitions How do we decide which descriptions centre to apply in a particular situation of the second sec	
Investigation 3	342-343	Develops formulae for the mean a the linear transformation of a varia	nd standard deviation of
Investigation 4	343-344	Allows students to develop an und statistics for standard deviation: th deviation s, and the population sta	e sample standard