## Analysis \& Approaches HL

 do not consider this an exhaustive list

| Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |


| Chapter 1: Further Trigonometry |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Exercise 1A q9 | 19 |  |  |  |  | Simple question which gives geometric meaning to the reciprocal trigonometric ratios for acute angles. |
| Historical note | 19-20 |  | Astronomy | Ancient Greece, India Europe | Hipparchus, Ptolemy, Aryabhata, Rheticus, Copernicus | The development of trigonometry involved contributions from many people groups, over several millennia. This could be discussed alongside the work of the Chinese astronomer Li Chunfeng (see Core Topics ch7 p158-159). |
| Investigation 1 | 20-21 | Functions |  |  |  | This important Investigation provides solid grounds for why the rigours of functional notation and properties are needed, in particular domain and range. We apply the idea of an inverse function to the trigonometric functions already studied on restricted domains. |
| Activity 1 | 23 | Continued fractions |  |  | Carl Friedrich Gauss |  |
| Exercise 1D q14a | 30 |  |  |  |  | Derivation of the important identities for $(\cos x)^{\wedge} 2$ and $(\sin x)^{\wedge} 2$ used in their integration. |
| Activity 2 | 31 |  |  |  |  | Parametric equations are a fun opportunity for exploration, even more so if returned later with complex numbers. Consider the complex function $n(t)=x(t)+i *$ $y(t)$. |
| Activity 3 | 38 | Series |  |  |  | Truncation of an infinite trigonometric series allows us to predict the graph of the infinite series. This highlights how a piecewise function may actually be described exactly using an infinite series. |



|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Historical note | 62 | Continued <br> fractions |  |  |  | Jacob Bernoulli, <br> Leonhard Euler |  | Exact representations of the irrational number e. |

Chapter 3: Logarithms

| Theory of Knowledge | $78-79$ |  | Physics | Scotland |  | John Napier | Nature of <br> mathematics |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| Investigation 3 | Do we invent or discover mathematics? <br> Is mathematics a collaborative effort? <br> Why is pure mathematics important? |  |  |  |  |  |  |

## Chapter 4: Introduction to Complex Numbers

| Opening Problem | 98 | Quadratic equations |  |  | Invites students to consider whether the square root of a negative number could have meaning. If so, do the solutions to a quadratic equation with negative discriminant have the same sum and product properties as the solutions to a quadratic equation with positive discriminant? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Historical note | 98-99 |  | Roman Egypt, Italy | Heron of Alexandria, Gerolamo Cardano, Rafael Bombelli | It took nearly 1500 years from when the idea that the square root of a negative number may have meaning, to the definition of $i=\operatorname{sqrt}(-1)$. |
| Historical note | 105 |  | Germany | Carl Friedrich Gauss | Carries on the narrative from the previous Historical note. |



## Chapter 6: Further Function

|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |

## Chapter 7: Counting

Discussion
Chapter 8: The Binomial Theorem

| Investigation 1 | $194-195$ |  |  |  |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Investigation 2 | 198 |  |  |  |  | Connects the binomial expansion to Pascal's triangle. <br> Explains the formula for the binomial coefficient using <br> the combinations from the previous chapter. |
| Historical note | 202 |  |  |  |  | Introduces the idea of a binomial expansion for rational <br> powers. |
| Theory | 203 |  |  |  |  | The idea of convergence is essential for any meaningful <br> discussion of series representations. In the absence of a <br> formal ratio test in this course, we can still compare with <br> the infinite geometric series already studied to give <br> intuitive understanding of the convergence of the <br> binomial expansion for rational powers. This will be <br> revisited later in the related Maclaurin series. |

## Chapter 9: Reasoning and Proof



|  | Page | Topic link | Subject link | International link | Cultural link | Historic link | TOK link | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Exercise 9E q8 | 223 |  |  |  |  |  |  | A simply posed question but very difficult to conveniently annotate or explain a solution. It could be solved by listing many, many cases. However, even in proof by exhaustion, we should aim to be concise and specific. |
| Section G | 225-227 |  |  |  |  |  |  | Proof by contrapositive has been included because it is so often confused with proof by contradiction. |
| Historical note | 227 |  |  | England, India |  | Godfrey Harold Hardy, John Littlewood, Srinivasa Ramanujan |  | The relationship between these famous 20th century mathematicians was recently featured in the film "The Man Who Knew Infinity". |
| Discussion | 230 |  |  |  |  | Carl Gauss |  | Similarities and differences between different forms of proof. |

Chapter 10: Proof by Mathematical Induction

| Opening Problem | 234 |  | Europe |  | Blaise Pascal, <br> Yang Hui | Parallel <br> development |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Historical note | 234 |  |  | Europe, India, <br> Persia, China |  | Leonhard Euler, <br> Francesco <br> Maurolico, Blaise <br> Pascal |  |  |
| Exercise 10A q5 | 237 |  |  |  |  | Highlights the danger of assuming a pattern will continue <br> in a particular form, and thus the importance of proof. |  |  |
| Section B | $237-249$ |  |  |  |  | This extremely comprehensive section on Mathematical <br> Induction highlights how a method or form of proof can <br> be applied to topics all across the subject. We consider <br> divisibility, functions, sequences and series, inequalities, <br> and geometry. |  |  |
| Activity |  |  |  |  |  | Fermat's Method of Infinite Descent was a forerunner to <br> Mathematical Induction. In some cases it provides <br> exceptionally elegant proofs. |  |  |

Chapter 11: Linear Algebra

| Theory and Discussion | 259 |  |  |  | Identification and understanding of form is key to solving <br> simultaneous linear systems. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Theory | $261-263$ |  |  |  |  |

## Chapter 12: Vectors

|  | Page | Topic link | Subject link | International link | Cultural link | Historic link | TOK link | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation 2 | 299 (link) |  |  |  |  |  |  | The unique representation of an n -dimensional vector as a linear combination of n mutually perpendicular vectors is considered for $\mathrm{n}=2,3$. This idea is fundamental to the unique specification of a point in the Cartesian coordinate system. The logical ideas expand readily to the vector equation of a line. |
| Discussion | 301-302 |  |  |  |  |  |  | In 2 dimensions, all vectors through a point which are perpendicular to the non-zero vector v , are parallel to one another. <br> In 3 dimensions, the vectors through a point which are perpendicular to the non-zero vector w , are not all parallel to one another, and in fact form a plane. |
| Investigation 3 | 310-311 |  |  |  |  |  |  | This investigation provides the matrix determinant background to the vector cross product formula. Subsequent worked examples are written in terms of both this matrix determinant definition and the formula booklet representation. |


| Chapter 13: Vector Applications |
| :--- |
| Opening Problem 324     Builds on from the Discussion in the previous Chapter <br> (p301-302) to lead students to the information necessary <br> for defining a plane.  <br> Theory of Knowledge $337-338$     August Möbius, <br> Sir William <br> Hamilton, Josiah <br> Willard Gibbs, Parallel <br> Olevelopment <br> Oliver Heaviside        |
| Investigation 2 |

Chapter 14: Complex numbers


|  | Page | Topic link | Subject link | International link | Cultural link | Historic link | TOK link | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Activity 2 | 377-378 |  |  |  |  |  |  | This Activity on locus shows how complex number representation can be more efficient than the real Cartesian plane for describing sets of points. |
| Historical note | 386 |  |  |  |  | Leonhard Euler | What is beauty? | Euler's "beautiful" equation links the three great constants of mathematics: exponential e, imaginary i , and the ratio $\pi$ of a circle's circumference to its diameter. |
| Investigation | 386-387 | Compound interest |  |  |  |  |  | Having previously used the idea of continuously compounding interest to motivate exponential e, we now consider the idea of "imaginary" compound growth. By tracing the movement of a number in the complex plane, we deduce that multiplication by $\mathrm{e}^{\wedge} \mathrm{i} \theta$ produces an anticlockwise rotation in the Argand plane through angle $\theta$. This is compared with multiplication by the real $\mathrm{e}^{\wedge} \mathrm{r}$ which produces an enlargement. |


| Chapter 15: Limits |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Opening Problem | 400 |  |  |  |  |  | We choose to use a very simple sequence to introduce limits. Students should well understand that as the term increases, the sequence gets closer and closer to $1 / 3$. |
| Historical note | 400 |  |  | Europe | Archimedes, John Wallis, AugustinLouis Cauchy, Bernard Bolzano, Karl Weierstrass | Proof | As far as Archimedes was concerned, his method of infinitesimals constituted proof of his results. Some 2000 years later, limits were formally defined, adding an extra layer of rigour to the proofs of Archimedes. Will there be a point where what we regard today as "proven" will be called into question, and re-examined in the light of new theory, to be subtly but importantly clarified or corrected? |
| Theory of Knowledge | 403 |  | Physics | Ancient Greece | Zeno of Elea | Paradoxes |  |
| Exercise 15B q12 | 406 |  |  |  |  |  | This is a very surprising function! |
| Investigation | 409 | Area, Functions |  |  |  |  | Neat area proof for the limit of $\sin (x) / x$ as $x \rightarrow 0$. <br> Students should be aware of the need for proving the limit not just as $\mathrm{x} \rightarrow 0+$ but also as $\mathrm{x} \rightarrow 0$ - |
| Exercise 15E q7 | 412 |  |  |  |  |  | Students should be aware of the limitations of technology. |
| Review Set 15A q5 <br> Review Set 15B q4 | $\begin{aligned} & 413 \\ & 414 \end{aligned}$ | Area |  |  |  |  | Further proofs of limiting values based on area. |

Chapter 16: Introduction to Differential Calculus

|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Historical note | 417 |  |  | Ancient <br> Egypt, <br> Ancient <br> Greece, <br> Europe |  | Democritus, <br> Eudoxus, <br> Archimedes, <br> Johann Bernoulli, <br> Isaac Barrow |  |  |
| Discussion | 424 |  |  |  | Building on ideas of continuity from the previous chapter, <br> we discuss the existence of the limit defined as the <br> gradiens of a tangent to a curve, hence leading students <br> towards differentiability. This is valuable for getting a <br> conceptual understanding of what could cause a lack of <br> differentiability before they see the formal definitions in <br> section F. |  |  |  |
| Historical note | 432 | Series |  |  | Italy, <br> Germany |  | Bernard Bolzano, <br> Karl Weierstrass |  |


| Chapter 17: Rules of Differentiation |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Opening Problem | 436 | Transformation of functions |  |  |  |  |  | The transformation of functions previously studied can give clues to the relationships between derivative functions. |
| Investigation 1 | 436-437 | Binomial expansion |  |  |  |  |  | Uses first principles and the binomial expansion with integer powers to deduce the derivative of terms of the form $a^{*} x^{\wedge} n$ where $n$ is a positive integer. |
| Investigation 2 | 442 |  |  |  |  |  |  | Leads to the Chain rule. |
| Investigation 3 | 444-445 |  |  |  |  |  |  | Leads to the Product rule. |
| Investigation 4 Investigation 5 | $\begin{aligned} & 449 \\ & 450 \end{aligned}$ |  |  |  |  |  |  | Leads to the derivative of $\mathrm{e}^{\wedge} \mathrm{x}$. |
| Investigation 6 | 454 |  |  |  |  |  |  | Leads to the derivative of $\ln \mathrm{x}$. |
| Investigation 7 | 457-458 |  |  |  |  |  |  | Leads to the derivatives of $\sin \mathrm{x}$ and $\cos \mathrm{x}$. |
| Exercise 17G. 1 q11 | 460 |  |  |  |  |  |  | Calculus derivation of Euler's formula. |

Chapter 18: Properties of Curves

| Exercise 18H q11 | 508 | Compound interest |  |  |  | Use of l'Hôpital's rule to illustrate the connection between the limit we saw in compound interest and exponential e. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Historical note | 508 |  | Switzerland, France | Johann Bernoulli, Marquis Guillaume de l'Hôpital | Ethics | Is it ethical to buy someone's discovery? |
| Review Set 18A q35 | 512 | Quadratic functions |  |  |  | Uses the shift-expand-shift principle to explore the tangent to a quadratic. |


|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Review Set 18B q35 | $515-516$ |  | Physics |  |  |  | Comsiders the focus-directrix definition of a parabola, and <br> the reflective property that any vertical rays will be <br> reflected through the focus. |

Chapter 19: Applications of Differentiation

| Exercise 19C q20 | 537 |  | Physics |  |  | Pierre de Fermat |  | Calculus derivation of the Law of Reflection and Snell's <br> Law of Refraction |
| :--- | :---: | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| Theory of Knowledge | 537 |  | Physics |  |  | Ibn Sah1, <br> Willebrord <br> Snellius, René <br> Descartes |  | Cubic splines are a popular and useful modelling tool. |
| Activity | 537 (link) |  | Graphic <br> Design, <br> Engineering |  |  |  |  |  |

Chapter 20: Introduction to Integration

| Opening Problem | 544 |  | Physics |  | Archimedes |  | We begin the study of integration by following its historical development. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation 1 | 546 | Series, Limits |  |  |  |  | Using the same series formula as used in the Core Topics investigation deriving the volume of a tapered solid formula, we prove Archimedes' result for the area under y $=x^{\wedge} 2$ on the interval $0<x<1$. |
| Historical note | 547 |  |  | Italy | Bonaventura Cavalieri |  |  |
| Historical note | 548 |  |  |  | Sir Isaac Newton, Gottfried Wilhelm Leibniz, Bernhard Riemann | Parallel development | The progression from Archimedes to modern calculus was only possible with the introduction of limits. |
| Exercise 20B q3 | 549 |  |  |  |  |  | Links to the standard normal deviation and the proportion of data within 3 standard deviations of the mean. |
| Investigation 2 | 551 | Geometric sequences and series |  |  | Pierre de Fermat |  | Uses the formula for an infinite geometric series to derive the formula for the definite integral under $y=x^{\wedge} k, k$ an integer not -1 , on the interval $0<\mathrm{x}<\mathrm{b}$. |

## Chapter 21: Techniques for Integration



Chapter 22: Definite Integrals

|  | Page | Topic link | Subject link | $\begin{array}{\|c\|} \hline \text { International } \\ \text { link } \end{array}$ | Cultural link | Historic link | TOK link | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Activity 3 | 618-619 | Probability |  |  |  | Georges-Louis Leclerc, Comte de Buffon |  | First historical application of calculus to probability. |
| Section I | 620-622 |  |  |  |  |  |  | There is no mention (either inclusion or exclusion) of improper integrals in the syllabus. However, given we have already studied l'Hôpital's rule and the clear link to understanding continuous statistical distributions, this section has been written with that focus. |
| Exercise 22I q7 | 622 |  |  |  |  | Evangelista Torricelli | Paradoxes | How can an object have finite volume but infinite surface area? |
| Review Set 22B q24 | 628 |  |  |  |  |  |  | Derives a function giving the values of $n!$ for any positive integer n . |

## Chapter 23: Kinematics

| Discussion | 631 | Vectors | Physics |  |  | From the outset, students can discuss the terminology <br> they have for motion, and how the physics and <br> mathematics relate. |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation | $647-649$ | Vectors | Physics | England, Italy |  | Galileo Galilei | Ethics <br> The study of projectile motion was driven by its <br> applications in war. Does this negate the virtue of its <br> study? |



|  | Page | Topic link | Subject link | International link | Cultural link | Historic link | TOK link | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation 2 | 658 |  |  |  |  | Leonhard Euler |  | Takes a deeper look at the integral of $\mathrm{x}^{\wedge} \mathrm{k}$, showing that in the limit as $k$ tends to -1 , the usual rule for the integral in fact tends to $\ln \mathrm{x}$. |
| Exercise 24B q2 | 660 | Binomial expansion |  |  |  |  |  | Links the binomial theorem for rational powers to the Maclaurin series for the same expression. |
| Exercise 24D q2 | 664 |  |  |  |  |  |  | Introduces the hyperbolic trigonometric functions cosh and sinh. |
| Exercise 24D q3 | 664 |  |  |  |  |  |  | Uses Maclaurin series to derive Euler's formula for ${ }^{\wedge} \mathrm{i} \theta$. |
| Exercise 24G q7 | 670 |  |  |  |  | Leonhard Euler |  | Follows Euler's proof for the infinite series expansion of $\left(\pi^{\wedge} 2\right) / 6$. |

Chapter 25: Differential Equations

| Historical note | 694 |  | Biology |  |  | Pierre François <br> Verhulst, <br> Raymond Pearl, <br> Lowell Reed |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Activity 1 | $700-701$ | Complex <br> numbers | Physics |  |  |  | As well as being a wonderful real-world example familiar <br> to most students, simple harmonic motion ties together <br> several mathematical themes. Euler's formula for $\mathrm{e}^{\wedge} \mathrm{i} \theta$ <br> provides the vital link between exponential and <br> trigonometric functions. |
| Activity 2 |  |  |  |  | Provides an introduction to Laplace transforms, including <br> the solution for the simple harmonic motion differential <br> equation. |  |  |

Chapter 26: Bivariate Statistics

| Historical note | 713 |  |  |  |  | Karl Pearson, Sir <br> Francis Galton |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Activity 2 | 726 |  |  | England |  | Franci <br> Anscombe |  |  |
| Theory of Knowledge | $727-728$ |  | Biology, <br> Environmental <br> Science | Japan, Global |  |  | Modelling |  |
| Theory of Knowledge | 732 |  |  |  | Equality and <br> Discrimination |  | Equality |  |

Chapter 27: Discrete Random Variables

| Exercise 27B q17 | 745 | Maclaurin series |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Activity | 750 |  | Game strategy |  |  |  |


|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation 2 | 760 |  |  |  |  | Comments |  |
| Investigation 3 | 763 |  |  |  |  | Use of technology to investigate the binomial distribution. |  |

Chapter 28: Continuous Random Variables

| Investigation 1 | 771 | Cumulative <br> frequency graphs |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Exercise 28B q12 | 777 | Improper <br> integrals, <br> Queuing theory |  |  |  |  | Students need to understand the difference between a <br> probability mass function for discrete variables, and a <br> probability density function for continuous variables. |  |
| Exercise 28B q15 | 778 |  |  |  |  |  |  |  |
| Historical note | 780 |  |  |  | Carl Friedrich <br> Gauss |  | Considers non-linear transformations of a continuous <br> random variable. |  |
| Investigation 2 | 780 | Calculus |  |  |  | Pierre-Simon <br> (Marquis de <br> Laplace) |  |  |
| Exercise 28C.2 q4 | 781 |  |  |  |  |  |  |  |
| Exercise 28C.2 q5 | $781-782$ | Maclaurin series |  |  |  |  | Investigates the normal curve using differential calculus. <br> functions. |  |
| Investigation 5 | 798 |  |  |  |  |  |  | The normal approximation to the binomial distribution. |

