Core Topics HL

 consider this an exhaustive list.

Page	Topic link	Subject link	International link	Cultural link	Historic link	TOK link

Chapter 2: Sets and Venn diagrams							
Opening Problem	34		Social studies	Global			Takes a familiar topic and encourages deeper analysis in the global context of the Human Development Index (HDI).
Theory of Knowledge	39-40	Proof by contradiction (A\&A)				Proof	

Chapter 3: Surds and exponents							
Opening Problem	54		Physics	England		Sir Joseph John Thomson	Nobel Prize winner in Physics 1906, subatomic particles
Investigation	55	Proof by equivalence (A\&A)					
Exercise 3E q11	68		Astronomy				Astronomical distances
Discussion	68			Asia	Mahjong		

Chapter 4: Equations						
Text	76	Proof (A\&A)				Identifying errors in worked solutions has been shown to be an important tool for conceptual understanding.
Historical note	79		Europe, Middle East, India			The development of the quadratic formula
Discussion	87			Technology		In a world of technology, there is still purpose to analytic methods and conceptual understanding.

Chapter 5: Sequences and series

	Page	Topic link	Subject link	International link	Cultural link	Historic link	TOK link	Comments
Opening Problem	90			Middle East, India	Legend, Chess	Ibn Khallikān		Famous problem
Exercise 5F q8 Exercise 5F q9	113							
114					Building blocks for Chapter 6, Investigation 2.			
Theory of Knowledge	$118-119$					Proof		
Exercise 5H q15	122		Economics				Extends students' understanding to generate a general formula for loan repayments.	
Theory of Knowledge	125		Germany		Leopold Kronecker	Infinity		
Activity 4	126 (link)	Affine transformations (A\&I)		Sweden		Helge von Koch		A\&I students explore the generation of this curve as iterations of a set of affine transformations.

Chapter 6: Measurement

Chapter 6: Measurement			Ancient Greece		Archimedes		Archimedes' proof for the formula for the surface area of a Investigation 1 Greece		
Investigation 2	$136-137$			Archimedes				\quad	Uses series to develop volume formulae in a pre-calculus
:---									
spirit.									
Essentially uses infinitessimals in the same manner as									
Archimedes.									
Comparison with Archimedes' method for deriving the									
formula for the volume of a sphere (but argued through									
cross-sectional area rather than physical moment).									
Little known connection between the surface area and									
volume of sphere used a set of tapered solids to									
approximate the sphere.									
Possible Paper 3 question.									

Chapter 7: Right angled triangle trigonometry

| Theory of Knowledge | $158-159$ | Astronomy | China | | Li Chunfeng | Observation,
 belief, parallel
 subject
 development |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	Page	Topic link	Subject link	International link	Cultural link	Historic link	TOK link	Comments
Exercise 7B q7	164							On first inspection, this appears to be a deductive geometry question. We train problem solvers by challenging them to think in different ways.
Exercise 7D q23	173	Scientific notation	Astronomy	Prussia		Friedrich Wilhelm Bessel		1838 measurement of the parallax of the star 61 Cygni.
Research	178-179		Physics	Global	Time			Possible Mathematics Exploration or Extended Essay.
Research	179		Astronomy	Global	Navigation	Hipparchus		Possible Mathematics Exploration or Extended Essay.

Chapter 8: The unit circle and radian measure

Theory of Knowledge	$189-190$		Ancient Babylon		The nature of mathematics	Is mathematics natural? What mathematical things are arbitrarily chosen? What are the benefits of global standardisation?
Discussion	195				Identities	

Chapter 9: Cosine rule proof	212	Proof by exhaustion (A\&A)				Most "proofs" of the cosine rule skip the comment about the acute angles in an obtuse angled triangle.
Investigation 1	216					Practical, hands-on investigation of the sine rule
Investigation 2	218					Practical, hands-on investigation of the ambiguous case of the sine rule
Exercise 9D q20 Exercise 9D q21	$\begin{aligned} & 225 \\ & 226 \end{aligned}$					Combines real-world application and problem solving skills in 3-dimensional problems.
Theory of Knowledge	226-227		Ancient Greece, India	Hipparchus, Eratosthenes	Subject development, protection of knowledge	Explores motivations for subject development, and the place of historical work in the modern subject. Compares spherical and planar triangles. Why did a "flat Earth" theory persist for so long?
Activity	227-228					Develops the formula for the area of a spherical triangle.
Review Set 9B q15	232	Proof (A\&A)	Ancient Greece	Heron		Develops Heron's formula for the area of a planar triangle.

Chapter 10: Points in space

Theory of Knowledge	243-244	Physics	Ancient Greece	Euclid	Axioms, definitions, multidimensional space	Explores Euclid's postulates as a basis for planar geometry. Poses serious questions about what we may consider as intuitive, such as straightness and direction. This becomes necessary for exploring space-time as needed for advanced Physics.

	Page	Topic link	Subject link	International link	Cultural link	Historic link	TOK link	Comments
Chapter 11: Probability								
Opening Problem	248		Insurance					Real-world probability application
Investigation 1 Investigation 2	$\begin{gathered} 250 \\ 250-251 \\ \hline \end{gathered}$							Practical, hands-on investigations. Understanding the role of experimental probability.
Activity 1	274 (link)			Hungary		George Pólya		Pólya's urn is a curious, paradoxical statistical model.
Activity 2	278			USA		Steve Selvin		The Monty Hall problem is one of the best known mathematical paradoxes. This Activity uses tree diagrams to explore the paradox, giving deep understanding of why the contestant should change their original guess.
Activity 3	278 (link)			USA		Walter Penney		Penney's Game is a classic mathematical paradox involving cyclic dominance. This advanced Activity explores Penney's Game using tree diagrams. Logic is needed to explain why some points on the tree are equivalent to others. Possible Mathematical Exploration.
Historical note	280					Thomas Bayes, Pierre-Simon Laplace		
Theory of Knowledge	283-284			Europe, USA	Ethics	Blaise Pascal, Pierre de Fermat, Agner Krarup Erlang, Edward Oakley Thorp	Mathematical intuition, decision making, ethics	

Chapter 12: Sampling and data

Discussion	$291-292$					Highlights the importance of specifically describing what we are investigating in a statistical experiment.	
Discussion	$298-299$		Politics	United Kingdom, EU		Explores the mathematics of the "Brexit" referendum.	
Theory of Knowledge	$299-300$		Medicine		Ethics		Ethics in research.

Chapter 13: Statistics

| Theory of Knowledge | $322-323$ | | | | Definitions | How do we decide which description or "definition" of
 centre to apply in a particular situation? |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Investigation 3 | $351-352$ | | | | | Develops formulae for the mean and standard deviation of
 the linear transformation of a variable. |
| Investigation 4 | $352-353$ | | | | | Allows students to develop an understanding of the two
 statistics for standard deviation: the sample standard
 deviation s, and the population standard deviation σ. |

| Page | Topic link | Subject link | International
 link | Cultural link | Historic link | TOK link |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad Comments \quad| |
| :--- |

Chapter 14: Quadratic functions

Opening Problem	360	Physics					Parabolic mirror, focal point, law of reflection - this theme is taken up in a later Investigation.
Activity 1	360						Conic sections
Investigation 1 Investigation 2	$\begin{aligned} & 363 \\ & 363 \\ & \hline \end{aligned}$						Practical investigations for developing understanding of how graphs relate to the form of a function.
Investigation 3	375-376						Method of second differences
Investigation 4	384-385	Physics					Links the geometric definition of a parabola to its algebraic form. Carries on the theme of the parabolic mirror from the Opening Problem, applying the law of reflection to explain the focal point.

\section*{Chapter 16: Transformations of functions

Chapter 17: Trigonometric functions

