ERRATA

Mathematics for Australia 9

Worked Solutions

First edition - 2013 initial print

The following errata were made on or before 17/Feb/2016
page 175 CHAPTER 9 EXERCISE 9D, Question 4 use correct units:
4 Area of Anya's farm $=$ length \times width

$$
\begin{aligned}
& =800 \mathrm{~m} \times 1.2 \mathrm{~km} \\
& =0.8 \mathrm{~km} \times 1.2 \mathrm{~km} \quad\{1 \mathrm{~km}=1000 \mathrm{~m}\} \\
& =0.96 \mathrm{~km}^{2} \\
& =0.96 \times 100 \mathrm{ha} \\
& =96 \mathrm{ha}
\end{aligned}
$$

and $\quad 36$ hectares out of 96 hectares
$=\frac{36}{96} \times 100 \%$
$=37.5 \% \quad$ So, 37.5% of Anya's farm is sown with wheat.
page 191 CHAPTER 10 EXERCISE 10A.1, Question 3 cid diagram point should have correct label:
3 © Let the distance from A to C be d_{1} units.

Let the distance from C to B be d_{2} units.

page 289 CHAPTER 14 EXERCISE 14B, Question 8 e should read:
8 e The manufacturer wants 95% of jars to contain between 880 and 920 peanuts.
Now, $1+6+8+8+14+8+5+3=53$ jars contain between 880 and 920 peanuts.
53 jars out of 60 jars $=\frac{53}{60} \times 100 \%$

$$
\approx 88.3 \%
$$

No, it is not the case for this sample.
1 a $C=2 \pi r$ where $r=4.2$

$$
\begin{aligned}
& C=2 \pi r \text { where } C=112 \\
& \therefore \quad 112=2 \pi r \\
& \therefore \quad r=\frac{112}{2 \pi} \\
& \quad \approx 17.8
\end{aligned}
$$

\therefore the radius is approximately 17.8 cm .
page 224 CHAPTER 10 EXERCISE 10E, Question 2 h should read:

page 294 CHAPTER 14 EXERCISE 14D.1, Question 13 should account for months having different numbers of days:
13 a mean $M=\frac{30 S+31 O+30 N}{91}$ where M, S, O, and N are temperatures in ${ }^{\circ} \mathrm{C}$.
b $\quad M=\frac{30 S+31 O+30 N}{91} \quad\{$ from $\mathbf{a}\}$
$\therefore 22=\frac{30 \times 18.5+31 \times 21+30 \times N}{91}$
$\therefore 2002=1206+30 N$
$\therefore 796=30 N$
$\therefore \quad N \approx 26.5$
So, Perth's mean temperature during November was approximately $26.5^{\circ} \mathrm{C}$.
page 306 CHAPTER 13 EXERCISE 13D, Question 4 a should read:

4 a | Distance $d(\mathrm{~m})$ | Frequency | Interval midpoint | Product |
| :---: | :---: | :---: | :---: |
| | $20 \leqslant d<30$ | 2 | 25 |
| $30 \leqslant d<40$ | 6 | 35 | 210 |
| $40 \leqslant d<50$ | 26 | 45 | 1170 |
| $50 \leqslant d<60$ | 12 | 55 | 660 |
| $60 \leqslant d<70$ | 3 | 65 | 195 |
| $70 \leqslant d<80$ | 1 | 75 | 75 |
| Total | 50 | | 2360 |

$$
\begin{aligned}
\therefore & \text { mean } \\
= & \frac{\text { sum of data values }}{\text { the number of data values }} \\
& \approx \frac{2360}{50} \\
& \approx 47.2 \mathrm{~m}
\end{aligned}
$$

page 394 CHAPTER 17 EXERCISE 17D.1, Question 4 a should read:
4 a The graph of $y=g(x)$ is obtained by b The graph of $y=g(x)$ is obtained by translating $f(x)=-\frac{1}{2} x-14$ units upwards. translating $f(x)=\frac{3}{2} x+1 \quad 2$ units to the
$\therefore g(x)=f(x)+4$

$$
\begin{aligned}
& =-\frac{1}{2} x-1+4 \\
& =-\frac{1}{2} x+3
\end{aligned}
$$

right.
$g(x)=\frac{3}{2}(x-2)+1$
$=\frac{3}{2} x-3+1$
$=\frac{3}{2} x-2$
page 447 CHAPTER 20 EXERCISE 20A, Question 9 C should read:

9 b radius of circle $\mathrm{A} \approx 5.39$ units \quad c | Distance between $(-2,3)$ and $(6,-3)$ |
| :--- |
| |
| $=\sqrt{(6-(-2))^{2}+(-3-3)^{2}}$ |
| |
| |
| $=\sqrt{8^{2}+(-6)^{2}}$ |
| |
| $=\sqrt{100}$ |
| |

