

ERRATA Mathematics for Australia 10 Worked Solutions

First edition - 2013 initial print

The following errata were made on 27/Jul/2015

page 64 CHAPTER 4 EXERCISE 4B.2, Question 2 h should read:

2 g $\frac{3b+9}{6}$ h $\frac{8b-12}{6}$ $=\frac{3(b+3)}{6}$ + HCF is 3 $=\frac{4(2b-3)}{6}$ + HCF is 4 $=\frac{^{1}Z(b+3)}{26}$ $=\frac{^{2}4(2b-3)}{36}$ $=\frac{b+3}{2}$ $=\frac{2(2b-3)}{3}$ $=\frac{4b-6}{3}$

page 81 CHAPTER 4 PRACTICE TEST 4C, Question 3 c ii should not cancel 0/0:

3 c Using b , $\left(a - \frac{9}{a}\right) \div \left(1 - \frac{a}{3}\right)$	$=\frac{3(a+3)}{-a}$	
When $a = 1$,	ii When $a = 3$,	When $a = 5$,
$\frac{3(a+3)}{-a} = \frac{3(1+3)}{-1}$	$1 - \frac{a}{3} = 1 - \frac{3}{3}$	$\frac{3(a+3)}{-a} = \frac{3(5+3)}{-5}$
$=\frac{3\times4}{-1}$	= 1 - 1 = 0	$=\frac{3\times 8}{-5}$
$=\frac{12}{-1}$	$\therefore \left(a - \frac{9}{a}\right) \div \left(1 - \frac{a}{3}\right)$	$=\frac{24}{-5}$
= -12	$=\left(a-rac{9}{a} ight)\div 0$	$=-\frac{24}{5}$
	which is undefined	

page 180 CHAPTER 8 EXERCISE 8D, Question 7 b i should read:

7 b	$i A = 180, \ a = 8, \ b = 6$	ii $A = 102, a = b = 3$	iii $A = 531, a = 9, b = 12$
	$\therefore c = \frac{180 - 2 \times 8 \times 6}{2(8+6)}$	$\therefore c = \frac{102 - 2 \times 3 \times 3}{2(3+3)}$:. $c = \frac{531 - 2 \times 9 \times 12}{2(9 + 12)}$
	$=\frac{84}{2 imes 14}$	$=\frac{84}{12}$	$=\frac{315}{42}$
	= 3	=7	= 7.5

The following errata were made on or before 12/Jun/2015

page 19 CHAPTER 1 PRACTICE TEST 1C, Question 1 a ii should read:

1 a i 1 hour = 60 minutes	ii 1 day = 24 hours
= 60×60 seconds	= 24×3600 seconds {using a i}
{1 minute = 60 s}	= 86400 seconds
= 3600 seconds	and $2.998 \times 10^8 \times 86400$
and $2.998 \times 10^8 \times 3600$	= 2.590 272 × 10 ¹³
= 1.079 28 × 10 ¹²	$\approx 2.590 \times 10^{13}$
$\approx 1.079 \times 10^{12}$ So, light travels about 1.079×10^{12} m in one hour (in a vacuum).	So, light travels about 2.590×10^{13} m in one day (in a vacuum).

page 170 CHAPTER 8 Exercise 8B, Question 1 b should read:

- 1 a $C = 2\pi r$ where r = 4.2
 - $\therefore \quad C = 2 \times \pi \times 4.2$ ≈ 26.4
 - :. the circumference is approximately 26.4 cm.

b
$$C = 2\pi r$$
 where $C = 112$
 $\therefore 112 = 2\pi r$
 $\therefore r = \frac{112}{2\pi}$
 ≈ 17.8
 \therefore the radius is approximately

 \therefore the radius is approximately 17.8 cm.

page 224 CHAPTER 10 EXERCISE 10E, Question 2 h should read:

2 g $x^2 + 1 = 3x$	h $2x^2 = 2x - 3$
$\therefore x^2 - 3x + 1 = 0$ which has	$\therefore 2x^2 - 2x + 3 = 0 \text{which has}$
$a = 1, \ b = -3, \ c = 1$	$a = 2, \ b = -2, \ c = 3$
$\therefore x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(1)}}{2(1)}$	$\therefore x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(2)(3)}}{2(2)}$
$\therefore x = \frac{3 \pm \sqrt{9 - 4}}{2}$	$\therefore x = \frac{2 \pm \sqrt{4 - 24}}{4}$
$\therefore x = \frac{3 \pm \sqrt{5}}{2}$	$\therefore x = \frac{2 \pm \sqrt{-20}}{4}$
	but $-20 < 0$ \therefore no real solutions exist.

page 306 CHAPTER 13 EXERCISE 13D, Question 4 a should read:

4	а	Distance d (m)	Frequency	Interval midpoint	Product	
		$20 \leqslant d < 30$	2	25	50	.:. mean
		$30 \leqslant d < 40$	6	35	210	sum of data values
		$40\leqslant d<50$	26	45	1170	the number of data values
		$50 \leqslant d < 60$	12	55	660	$\approx \frac{2360}{50}$
		$60 \leqslant d < 70$	3	65	195	
		$70 \leqslant d < 80$	1	75	75	$pprox 47.2 \ { m m}$
		Total	50		2360	

page 394 CHAPTER 17 EXERCISE 17D.1, Question 4 a should read:

4 **a** The graph of y = g(x) is obtained by **b** The graph of y = g(x) is obtained by translating $f(x) = -\frac{1}{2}x - 1$ 4 units upwards. translating $f(x) = \frac{3}{2}x + 1$ 2 units to the $\therefore g(x) = f(x) + 4$ $\therefore g(x) = \frac{3}{2}(x-2) + 1$ $=-\frac{1}{2}x-1+4$ $=\frac{3}{2}x-3+1$ $=-\frac{1}{2}x+3$ $=\frac{3}{2}x-2$

page 447 CHAPTER 20 EXERCISE 20A, Question 9 C should read:

9 b radius of circle $A \approx 5.39$ units	• Distance between $(-2, 3)$ and $(6, -3)$
radius of circle $B \approx 5.83$ units	$=\sqrt{(6-(-2))^2+(-3-3)^2}$
	$=\sqrt{8^2+(-6)^2}$
	$=\sqrt{100}$
	= 10 units