

ERRATA

Mathematics for Australia 8

Worked Solutions

2012 First Edition

page 14 CHAPTER 1 EXERCISE 1E, Question 5 had parts ito I removed, and a new question $\mathbf{6}$ was inserted:

6 a The prime factors of 8 are $2 \times 2 \times 2$
The prime factors of 18 are

$$
\frac{2 \times 3 \times 3}{2 \times 2 \times 2 \times 3 \times 3}
$$

The prime factors of 24 are $2 \times 2 \times 2 \times 3$
The prime factors of 15 are
$\frac{3 \times 5}{2 \times 2 \times 2 \times 3 \times 5}$
$\therefore \quad \mathrm{LCM}=120$
c The prime factors of 3 are
The prime factors of 7 are
The prime factors of 8 are

$$
\frac{2 \times 2 \times 2}{2 \times 2 \times 2 \times 3 \times 7}
$$

$\therefore \quad \mathrm{LCM}=168$

3
7
\therefore LCM $=168$
(This affects Mathematics for Australia 8 textbooks printed during or after 2014 where this question was inserted. Note that this bumps the existing questions $\mathbf{6}$ and $\mathbf{7}$ to become questions $\mathbf{7}$ and $\mathbf{8}$. Original solutions to question $\mathbf{5}$ parts \mathbf{i} to \mathbf{I} are included at the end of this document.)
page 37 and 38 CHAPTER 2 PRACTICE TEST 2C, Question 1 was changed, solution changes accordingly:
1 a Let F be the set of hotels that had fleas, and R be the set of hotels that had rats. If 3 hotels had both pests, then $n(F \cap R)=3$.

b i

The hotels which had neither fleas nor rats are in the set $(F \cup R)^{\prime}$.
$\therefore 40$ hotels had neither fleas nor rats.

The hotels which had rats, but not fleas are in the set $R \cap F^{\prime}$.
$\therefore 4$ hotels had rats, but not fleas.
iii

The shaded region represents the hotels which had either fleas or rats, but not both.
$\therefore 9+4=13$ hotels had either fleas or rats, but not both.
page 107 CHAPTER 6 PRACTICE TEST 6B, Question $\mathbf{7}$ a was changed, solution changes accordingly:
$7 \quad$ a $\quad \frac{3^{2} \times 3^{4}}{3^{3}}=\frac{3^{2+4}}{3^{3}}$
$7 \quad$ a $\frac{3^{3}}{3^{2} \times 3^{4}}=\frac{3^{3}}{3^{2+4}}$

$$
=\frac{3^{6}}{3^{3}}
$$

$$
=3^{6-3}
$$

$$
=3^{3}
$$

(2014 onwards solution)

$$
\begin{aligned}
& =\frac{3^{3}}{3^{6}} \\
& =3^{3-6} \\
& =3^{-3}
\end{aligned}
$$

(Pre 2014 solution)
page 109 CHAPTER 7 EXERCISE 7A, Question $\mathbf{3} \mathbf{b}$ should not say the equation is true when $\mathrm{k}=1$:
3 b $k+k=k^{2}$ is true for only certain values of $k(0,2)$ $\therefore k+k=k^{2}$ is not an identity
page 293 CHAPTER 16 EXERCISE 16D, Question 1 a should read:
$1 \quad \mathbf{a}$ If x is greater than 9 and $3 x+4 y=30$, then y will not be positive.
page 299 CHAPTER 16 EXERCISE 16F, Question 8 had a minor typographical error:
8 In a rhombus, all sides are equal.
$\therefore 7 x+1=2 x+7$
$\therefore 5 x+1=7 \quad$ \{subtracting $2 x$ from both sides $\}$
$\therefore 5 x=6 \quad$ \{subtracting 1 from both sides $\}$
$\therefore x=\frac{6}{5} \quad$ \{dividing both sides by 5 \}
$=1.2$
\therefore the sides have length $2(1.2)+7=9.4 \mathrm{~cm}$
\therefore the perimeter of the rhombus is $4 \times 9.4 \mathrm{~cm}=37.6 \mathrm{~cm}$
page 331 CHAPTER 18 EXERCISE 18A, Question 4 c should not mistake decimal places for significant figures:
4 c There were 2 Australian guests.
Expressed as a percentage of the total, this is $\frac{2}{36} \times 100 \%=\frac{200}{36} \%$

$$
\approx 5.56 \%
$$

$\therefore \quad$ approximately 5.56% of the guests were Australian.
page 339 CHAPTER 18 EXERCISE 18D.1, Question 9 c should read:
$9 \quad$ c The new data set is: $\begin{array}{llllllll}11 & 24 & 28 & 22 & 16 & 13 & 10\end{array}$
The new mean $=\frac{114+10}{7} \quad\{$ using the sum from $\mathbf{a}\}$

$$
\begin{aligned}
& =\frac{124}{7} \\
& \approx 17.7 \quad(3 \text { s.f. })
\end{aligned}
$$

So, the new mean is 17.7 mm of rain.
(These solutions apply to Mathematics for Australia 8 textbooks printed before 2014)

h

5	1225
5	245
7	49
7	7
	1

$1225=5 \times 5 \times 7 \times 7$
$=5^{2} \times 7^{2}$

13

$=2^{3} \times 3^{2} \times 13$

j	3
3	945
	315
	105
	35
	7
	7

$\therefore \quad 910=2 \times 5 \times 7 \times 13$

$$
\begin{aligned}
\therefore \quad 945 & =3 \times 3 \times 3 \times 5 \times 7 \\
& =3^{3} \times 5 \times 7
\end{aligned}
$$

i	2	588
	2	294
	3	147
	7	49
	7	7

$$
\begin{aligned}
\therefore \quad 588 & =2 \times 2 \times 3 \times 7 \times 7 \\
& =2^{2} \times 3 \times 7^{2}
\end{aligned}
$$

I	2	1274
	637	
	631	
	9	13
	1	

$$
\begin{aligned}
\therefore \quad 1274 & =2 \times 7 \times 7 \times 13 \\
& =2 \times 7^{2} \times 13
\end{aligned}
$$

page 37 and 38 CHAPTER 2 PRACTICE TEST 2C, Question 1 was changed, original solution provided:
(This solution applies to Mathematics for Australia 8 textbooks printed before 2014)
1 a Let F be the set of hotels that had fleas, and R be the set of hotels that had rats.
56 hotels were visited, so $n(U)=56$.
12 hotels had fleas, so $n(F)=12$.
7 hotels had rats, so $n(R)=7$.
40 hotels were free of these pests, so $n\left((F \cup R)^{\prime}\right)=40$.
$\therefore \quad n(F \cup R)=56-40=16$
So, 16 hotels had either fleas or rats or both.
$\therefore \quad a+b+c=16$
But 12 hotels had fleas
$\therefore a+b=12 \quad \therefore \quad c=4$
and 7 hotels had rats
$\therefore b+c=7$

$\therefore b+4=7$
$\therefore b=3$
and $\quad a+b=12$
$\therefore a+3=12$

$$
\therefore \quad a=9
$$

b i

The shaded region represents the hotels which had both fleas and rats.
$\therefore 3$ hotels had both fleas and rats.
ii

The shaded region represents the hotels which had rats, but not fleas.
$\therefore 4$ hotels had rats, but not fleas.

