

ERRATA Mathematics for Australia 8 Worked Solutions

2012 First Edition

6

page 14 CHAPTER 1 EXERCISE 1E, Question 5 had parts i to I removed, and a new question 6 was inserted:

а	The prime factors of 8 are	$2 \times 2 \times 2$ b	The prime factors of 24 are	$2\times 2\times 2\times 3$
	The prime factors of 18 are	$2 \times 3 \times 3$	The prime factors of 15 are	3×5
	\therefore LCM = 72	$2 \times 2 \times 2 \times 3 \times 3$	\therefore LCM = 120	$2 \times 2 \times 2 \times 3 \times 5$
c	The prime factors of 3 are	3		
	The prime factors of 7 are	7		
	The prime factors of 8 are	$2 \times 2 \times 2$		
	\therefore LCM = 168	$2 \times 2 \times 2 \times 3 \times 7$		

(This affects Mathematics for Australia 8 textbooks printed during or after 2014 where this question was inserted. Note that this bumps the existing questions **6** and **7** to become questions **7** and **8**. Original solutions to question **5** parts **i** to **I** are included at the end of this document.)

page 37 and 38 CHAPTER 2 PRACTICE TEST 2C, Question 1 was changed, solution changes accordingly:

1 a Let F be the set of hotels that had fleas, and R be the set of hotels that had rats. If 3 hotels had both pests, then $n(F \cap R) = 3$.

The shaded region represents the hotels which had either fleas or rats, but not both. $\therefore 9+4=13$ hotels had either fleas or rats, but not both.

(original solution included at the end of this document for people with Mathematics for Australia 8 textbooks printed before 2014)

page 107 CHAPTER 6 PRACTICE TEST 6B, Question 7 a was changed, solution changes accordingly:

7 a	$\frac{3^2 \times 3^4}{3^3} = \frac{3^{2+4}}{3^3}$	7 a $\frac{3^3}{3^2 \times 3^4} = \frac{3^3}{3^{2+4}}$	
	$=\frac{3^{6}}{2^{3}}$	$=\frac{3^3}{26}$	
	$= 3^{6-3}$	$=3^{3-6}$	
	$=3^{3}$	$=3^{-3}$	
(2014 onwards solution)		(Pre 2014 solution)	

page 109 CHAPTER 7 EXERCISE 7A, Question **3 b** should not say the equation is true when k = 1:

k + k = k² is true for only certain values of k (0, 2)
∴ k + k = k² is not an identity

page 293 CHAPTER 16 EXERCISE 16D, Question 1 a should read:

1 a If x is greater than 9 and 3x + 4y = 30, then y will not be positive.

page 299 CHAPTER 16 EXERCISE 16F, Question 8 had a minor typographical error:

- 8 In a rhombus, all sides are equal.
 - $\therefore \quad 7x+1 = 2x+7$

 $\therefore 5x + 1 = 7 \qquad \{\text{subtracting } 2x \text{ from both sides}\} \\ \therefore 5x = 6 \qquad \{\text{subtracting } 1 \text{ from both sides}\} \\ \therefore x = \frac{6}{5} \qquad \{\text{dividing both sides by } 5\} \\ = 1.2 \\ \therefore \text{ the sides have length } 2(1.2) + 7 = 9.4 \text{ cm} \end{cases}$

- the perimeter of the rhombus is 4×9.4 cm = 37.6 cm

page 331 CHAPTER 18 EXERCISE 18A, Question 4 c should not mistake decimal places for significant figures:

4 c There were 2 Australian guests.

Expressed as a percentage of the total, this is $\frac{2}{36} \times 100\% = \frac{200}{36}\%$ $\approx 5.56\%$ (3 s.f.)

 \therefore approximately 5.56% of the guests were Australian.

page 339 CHAPTER 18 EXERCISE 18D.1, Question 9 c should read:

9 c The new data set is: 11 24 28 22 16 13 10 The new mean $=\frac{114+10}{7}$ {using the sum from **a**} $=\frac{124}{7}$ ≈ 17.7 (3 s.f.) So, the new mean is 17.7 mm of rain.

page 14 CHAPTER 1 EXERCISE 1E, Question 5 had parts i to I removed, original solution provided:

(These solutions apply to Mathematics for Australia 8 textbooks printed before 2014)

5

page 37 and 38 CHAPTER 2 PRACTICE TEST 2C, Question 1 was changed, original solution provided:

(This solution applies to Mathematics for Australia 8 textbooks printed before 2014)

The shaded region represents the hotels which had both fleas and rats. ∴ 3 hotels had both fleas and rats.

The shaded region represents the hotels which had rats, but not fleas. ∴ 4 hotels had rats, but not fleas.