4 a Prove that for θ in radians:
i arc length $\mathrm{AB}, \quad l=r \theta$
ii sector area, $A=\frac{1}{2} r^{2} \theta$.
b Find the arc length and area of a sector of radius 5 cm and angle 2 radians.
c If a sector has radius 10 cm and arc length
 13 cm , find its area.

B

 PERIODIC FUNCTIONS FROM CIRCLESConsider a Ferris wheel of radius 10 m revolving at constant speed. For convenience we place a set of axes through its centre of rotation.
The height of P , the point representing the person on the wheel relative to the principal axis at any given time, can be determined by using right angle triangle trigonometry.

$$
\text { As } \sin \theta=\frac{h}{10}, \quad \text { then } \quad h=10 \sin \theta
$$

From this it is obvious that as time goes by θ changes and so does h.
So, h is a function of θ, but more importantly h is a function of time t.

SINE AND COSINE FROM THE UNIT CIRCLE

The unit circle is the circle, centre $(0,0)$ with radius 1 unit.
If $\mathrm{P}(x, y)$ moves around the unit circle such that OP makes an angle of t with the positive x-axis then:
the x-coordinate of P is $\cos t$ and the y-coordinate of P is $\sin t$.

In the first quadrant, i.e., $0<t<\frac{\pi}{2}$, we see the connection with right angled triangle trigonometry as:

$$
\begin{aligned}
\cos t & =\frac{\mathrm{ON}}{\mathrm{OP}}=\frac{x}{1}=x \\
\text { and } \sin t & =\frac{\mathrm{PN}}{\mathrm{OP}}=\frac{y}{1}=y
\end{aligned}
$$

Notice also that in \triangle ONP, $x^{2}+y^{2}=1 \quad$ \{Pythagoras\}

$$
\text { and so }[\cos t]^{2}+[\sin t]^{2}=1
$$

$$
\text { or } \cos ^{2} t+\sin ^{2} t=1 \quad \text { if we use } \cos ^{2} t \text { for }[\cos t]^{2} \text {, etc. }
$$

Notice also that as $-1 \leqslant x \leqslant 1$ and $-1 \leqslant y \leqslant 1$ for all points on the unit circle, then:

$$
-1 \leqslant \cos t \leqslant 1 \quad \text { and } \quad-1 \leqslant \sin t \leqslant 1 \quad \text { for all } t
$$

Example 30

a Illustrate $|z-2|=3$ using geometric methods.
b Check a using algebraic argument.
a $\quad|z-2|=3$ means that the distance from z to 2 is always 3 units.
This means that z lies on a circle centre (2,0), radius 3 .
[2 is represented by the vector shown.]
b If $z=x+y i$ then $|z-2|=3$ becomes

$$
\begin{aligned}
|x+y i-2| & =3 \\
|(x-2)+y i| & =3 \\
\therefore \quad \sqrt{(x-2)^{2}+y^{2}} & =3 \\
\therefore \quad(x-2)^{2}+y^{2} & =9
\end{aligned}
$$

which is a circle, centre $(2,0)$, radius $\sqrt{9}=3$ units.

2 Illustrate the following using geometric methods and check your answer using an algebraic argument:
a $\quad|z+i|=2$
b $|z+1| \leqslant 2$
c $|z-1+i|>2$

3 Illustrate:
a $\operatorname{Re}(z) \geqslant 0$
b $\quad \operatorname{Re}(z)<2$
c $-1<\operatorname{Re}(z) \leqslant 1$
d $\operatorname{Im}(z)<0$
e $\operatorname{Im}(z) \geqslant-1$
f $0 \leqslant \operatorname{Im}(z)<1$

Example 31

a Illustrate $|z-2|=|z+2 i|$. What Cartesian equation does its graph have?
b Check a using algebraic argument.
a Since $|z-2|=|z-(-2 i)|$, $\quad z^{\prime}$'s distance from 2 is equal to its distance from $-2 i$.
This means that the end of z is equidistant from $(2,0)$ and $(0,-2)$.

So, it lies on the perpendicular bisector of $(2,0)$ and $(0,-2)$.
This is the line $y=-x$.

b If $z=x+i y$ then

$$
\begin{aligned}
|z-2| & =|z+2 i| \quad \text { becomes } \\
|x+i y-2| & =|x+i y+2 i| \\
\therefore \quad|(x-2)+i y| & =|x+(y+2) i| \\
\text { i.e., } \quad \sqrt{(x-2)^{2}+y^{2}} & =\sqrt{x^{2}+(y+2)^{2}}
\end{aligned}
$$

The Julia set is a result of iterating $z \rightarrow z^{2}+c$ for a fixed complex number c and varying z.
INVESTIGATION 4
$z \rightarrow z^{2}+c$ ITERATIONS WITH c

FIXED AND REAL

$z \rightarrow z^{2}$ is a special case of $z \rightarrow z^{2}+c$ with $c=0$.
$z \rightarrow z^{2} \quad$ generated the filled-in Julia set.
What filled-in Julia set results from
$z \rightarrow z^{2}-\frac{1}{2}, \quad$ say?

What to do:

1 Click on the icon to experiment with filled-in Julia sets resulting from:
a $\quad c=-\frac{1}{2}$
b $\quad c=i$
c $c=\frac{1}{2}+\frac{1}{2} i$
d $c=\frac{1}{2}-\frac{1}{2} i$

2 Choose points within, outside, and on the boundary and obtain their orbit plots.

You should have discovered that the filled-in Julia set for $z \rightarrow z^{2}-\frac{1}{2}$

$z \rightarrow z^{2}+c$ ITERATIONS WITH c FIXED AND REAL

In the investigation we observed the Julia set for the quadratic iteration $z \rightarrow z^{2}-\frac{1}{2}$.
The question arises: "Does it have invariant points and cycles."
Consider the following example:

Example 34

Under $\quad z \rightarrow z^{2}-\frac{1}{2}: \quad$ a $\quad W$ hat are the invariant points? b Identify a 2-cycle.
a For invariant points

$$
\begin{aligned}
z & =z^{2}-\frac{1}{2} \\
\therefore \quad z^{2}-z-\frac{1}{2} & =0 \\
\text { i.e., } 2 z^{2}-2 z-1 & =0 \\
\text { i.e., } \quad z & =\frac{2 \pm \sqrt{4-4(2)(-1)}}{4} \\
\text { i.e., } \quad z & =\frac{1 \pm \sqrt{3}}{2}
\end{aligned}
$$

b $\quad z \rightarrow z^{2}-\frac{1}{2} \rightarrow\left(z^{2}-\frac{1}{2}\right)^{2}-\frac{1}{2}=z^{4}-z^{2}-\frac{1}{4}$
So, solving $z^{4}-z^{2}-\frac{1}{4}=z$
i.e., $\quad 4 z^{4}-4 z^{2}-4 z-1=0$

EXERCISE 7B

1 A circular piece of tinplate of radius 10 cm has 3 segments removed (as illustrated).
If θ is the measure of angle COB, show that the remaining area is given by

$$
A=50(\theta+3 \sin \theta)
$$

Hence, find θ to the nearest $\frac{1}{10}$ of a degree when the area A is a maximum.

2 A symmetrical gutter is made from a sheet of metal 30 cm wide by bending it twice (as shown).
For θ as indicated:
a deduce that the cross-sectional area is given by

$$
A=100 \cos \theta(1+\sin \theta)
$$

b Hence, show that $\frac{d A}{d \theta}=0$ when $\sin \theta=\frac{1}{2}$ or -1 .

10 cm end view
c What value is θ if the gutter has maximum carrying capacity?

3 Jack can row a boat across a circular lake of radius 2 km at 2 kmph . He can walk around the edge of the lake at 5 kmph.
What is Jack s shortest possible time to get from P to R by rowing from P to Q and walking from Q to R ?

Example 7

Two corridors meet at right angles and are 2 m and 3 m wide respectively. θ is the angle marked on the given figure and $A B$ is a thin metal tube which must be kept horizontal as it moves around the corner from one corridor to the other without bending it.
a Show that the length $A B$, is given by

$$
L=\frac{3}{\cos \theta}+\frac{2}{\sin \theta}
$$

b Show that $\frac{d L}{d \theta}=0 \quad$ when $\theta=\tan ^{-1}\left(\sqrt[3]{\frac{2}{3}}\right) \doteqdot 41.14^{0}$.
c Determine L when $\theta=\tan ^{-1}\left(\sqrt[3]{\frac{2}{3}}\right)$ and comment on the significance of this value.

From Investigation 5 you should have discovered that:

if $x^{\prime}=-\alpha y, y^{\prime}=\beta x$, and $\alpha, \beta>0$, then $x(t)=A \cos (\omega t+\phi), y(t)=B \sin (\omega t+\phi)$
where $\omega=\sqrt{\alpha \beta}$ and $\frac{A}{B}=\sqrt{\frac{\alpha}{\beta}}, \quad x(0)=A \cos \phi, \quad y(0)=B \sin \phi$.

Example 1

Solve $x^{\prime}=-3 y, y^{\prime}=2 x$ with boundary conditions $x(0)=0, y(0)=2$.

$$
\begin{aligned}
\alpha=3 \text { and } \beta=2 \quad \therefore \quad \omega & =\sqrt{\alpha \beta}=\sqrt{6} \\
\text { and } \quad \frac{A}{B} & =\sqrt{\frac{\alpha}{\beta}}=\frac{\sqrt{3}}{\sqrt{2}} \\
\text { But } \quad x(0)=A \cos \phi & =0 \quad \text { and } \quad y(0)=B \sin \phi=2 \\
\therefore \quad \frac{B \sin \phi}{A \cos \phi} & =\frac{2}{0} \\
\tan \phi & \quad \text { is undefined } \\
\therefore \quad \phi & =\frac{\pi}{2} \\
\therefore \quad B \sin \frac{\pi}{2} & =2 \quad \text { i.e., } \quad B=2 \\
\text { and } \quad A & =\frac{\sqrt{3}}{\sqrt{2}} B=\frac{\sqrt{3}}{\sqrt{2}} \times 2=\sqrt{6}
\end{aligned}
$$

$\therefore \quad x(t)=\sqrt{6} \cos \left(\sqrt{6} t+\frac{\pi}{2}\right), \quad y(t)=2 \sin \left(\sqrt{6} t+\frac{\pi}{2}\right) \quad$ is the particular solution.
Note: Always check your solution by differentiating. Also recheck the initial conditions

EXERCISE 9A. 3

1 Solve $x^{\prime}=-2 y, y^{\prime}=2 x$ with boundary conditions $x(0)=-\sqrt{2}, y(0)=\sqrt{2}$.
2 Solve $x^{\prime}=-3 y, y^{\prime}=3 x$ with boundary conditions $x(0)=\sqrt{5}, y(0)=-2$.
3 Solve $x^{\prime}=-2 y, y^{\prime}=\frac{x}{2}$ with boundary conditions $x(0)=1, y(0)=\frac{\sqrt{3}}{2}$.
4 Solve $x^{\prime}=-\frac{1}{2} y, y^{\prime}=\frac{3}{2} x$ with boundary conditions $x(0)=-1, y(0)=\frac{3 \sqrt{3}}{2}$.
5 Solve $\frac{d I}{d t}=-\frac{1}{L} V$ and $\frac{d V}{d t}=\frac{1}{C} I$ for $L=2$ henrys, $C=0.5$ farads with $I(0)=0$ and $V(0)=-\sqrt{\frac{L}{C}} I_{p} . \quad I_{p}$ is the maximum current.

3 Solve $\left\{\begin{array}{l}x^{\prime}=-x+y \\ y^{\prime}=x-y\end{array}\right.$ given that $\quad x(0)=2, \quad y(0)=8$.
4 Solve $\left\{\begin{array}{l}x^{\prime}=x \\ y^{\prime}=x-2 y\end{array}\right.$ given that $\quad x(0)=-1, \quad y(0)=-2$.
5 Solve $\left\{\begin{array}{l}x^{\prime}=2 x+y \\ y^{\prime}=x+2 y\end{array}\right.$ given that $x(0)=4, \quad y(0)=-6$.
6 Solve $\left\{\begin{array}{l}x^{\prime}=-2 x+5 y \\ y^{\prime}=-2 x\end{array}\right.$ given that $x(0)=4, \quad y(0)=2$.
7 Solve $\left\{\begin{array}{l}x^{\prime}=-2 x+y \\ y^{\prime}=-x-4 y\end{array}\right.$ given that $x(0)=7, \quad y(0)=2$.
8 The interactive differential equations for an LC-circuit are $\frac{d I}{d t}=-\frac{1}{L} V \quad$ and $\frac{d V}{d t}=\frac{1}{C} I, \quad L$ and C are positive constants.
Given that $I(0)=0$, show that $I(t)=I_{p} \sin \left(\frac{t}{\sqrt{L C}}\right)$ and $V(t)=-\sqrt{\frac{L}{C}} I_{p} \cos \left(\frac{t}{\sqrt{L C}}\right) \quad\left\{I_{p}\right.$ is the peak or maximum current in the circuit $\}$.

9 For the chemical reaction example at the start of this chapter the reactant's system

$$
\begin{cases}\chi^{\prime}=k_{1} D-k_{2} T & \ldots \ldots . \text { (1) } \tag{1}\\ D^{\prime}=-k_{1} D+k_{2} T & \ldots \ldots . \text { (2) } \quad \text { was examined. }\end{cases}
$$

Given the initial conditions $T(0)=0$ and $D(0)=D_{0}$, show that the actual solution is:

$$
\left\{\begin{array}{l}
D(t)=\frac{k_{1} D_{0}}{k_{1}+k_{2}}\left(e^{-\left(k_{1}+k_{2}\right) t}+\frac{k_{2}}{k_{1}}\right) \\
T(t)=\frac{k_{1} D_{0}}{k_{1}+k_{2}}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)
\end{array}\right.
$$

D

 PROBLEM SOLVING
EXERCISE 9D

1 The motion of a particle moving on a circle of radius 2 units is described by the interacting equations

$$
\frac{d x}{d t}=-2 y \quad \text { and } \quad \frac{d y}{d t}=2 x
$$

Find the solution to the system given that the particle starts at A $(\sqrt{2},-\sqrt{2})$.

4 a If $x^{\prime}=\alpha x+\beta y$ and $y^{\prime}=\gamma x+\delta y$, show that $x^{\prime \prime}-(\alpha+\delta) x^{\prime}+(\alpha \delta-\beta \gamma)=0$.
b In a, what form do the solutions take if $\left|\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right|=\alpha \delta-\beta \gamma=0$?
5 Solve $\left\{\begin{array}{l}x^{\prime}=x-y \\ y^{\prime}=-x+y\end{array}\right.$ given that $x(0)=2$ and $y(0)=3$.
6 The motion of a particle which is moving in a circle of radius 2 units is described by the interacting differential equations $x^{\prime}=-3 y, y^{\prime}=3 x$.
Find the solution to the system given that the particle is initially at $(-2,0)$.
7 A 3 kg mass is placed on the end of a spring with spring constant $k=2.16$.
The extension $s \mathrm{~cm}$ and velocity $v \mathrm{~cm} / \mathrm{s}$ are related by $s^{\prime}=v$ and $v^{\prime}=-\frac{k}{m} s-\frac{c}{m} v$ where $c=5.4$ is the damping constant. Given that $s(0)=5 \mathrm{~cm}$ and $v(0)=-12$ cm / s find the particular solutions for $s(t)$ and $v(t)$.

8 In an LC circuit, $L=30$ henrys and $C=1.2$ farads and the voltage and current are related by $I^{\prime}=-\frac{1}{L} V$ and $V^{\prime}=\frac{1}{C} I$.
a Find $V(t)$ and $I(t)$ for boundary conditions $I(0)=0 \mathrm{amps}$ and $V(0)=-54$ volts.
b What is the maximum current flow in the circuit?

REVIEW SET 9B

1 Consider the differential equations $x^{\prime}=-\alpha y, y^{\prime}=\beta x$ where the general solution is $x(t)=A \cos (\omega t+\phi), \quad y(t)=B \sin (w t+\phi)$.
a Show that $\omega=\sqrt{\alpha \beta}$ and $\frac{A}{B}=\sqrt{\frac{\alpha}{\beta}}$.
b Use a to solve $x^{\prime}=-3 y, y^{\prime}=2 x$ where $x(0)=y(0)=2$.
2 Find the solution of $y^{\prime \prime}+2 y^{\prime}+3 y=0$ with boundary conditions $y(0)=4$ and $y^{\prime}(0)=6$.

3 If $x^{\prime}=5 x-y$ and $y^{\prime}=-x-2 y$ find constants a and b such that $y^{\prime \prime}+a y^{\prime}+b y=0$. What second order differential equation connects $x^{\prime \prime}, x^{\prime}$ and x ?

4 a If $x^{\prime}=\alpha x+\beta y$ and $y^{\prime}=\gamma x+\delta y$, show that $y^{\prime \prime}-(\alpha+\delta) y^{\prime}+(\alpha \delta-\beta \gamma) y=0$.
b If in a $\alpha+\delta=0$, when will the solutions be:
i entirely exponential ii entirely trigonometric?
5 Solve $\left\{\begin{array}{l}x^{\prime}=-x+y \\ y^{\prime}=x-y\end{array}\right.$ given that $x(0)=4$ and $y(0)=3$.

MATHEMATICS FOR YR 12 - SPECIALIST MATHEMATICS
ERRATA (as at 7 September 2010)
back cover
ISBN should be 978-1-876543-79-2

QUESTIONS

page 21 Exercise 1B. 4
$4 \mathbf{b}$ the difference between two odd functions is odd

page 28 Exercise 1C. 5

5 in the diagram, θ should be the angle between BC and the horizontal
page 31 Exercise 1D
11 should start "Recall that if $f(x) \ldots$..
page 32 Exercise 1D
15 e bottom line should be ".... and $\tan a=\frac{B}{A}$."
page 33 Exercise 1D
16 second line should end with ".... and $\tan a=\frac{B}{A}$."

page 37 Review Set 1B

3 should begin with "If $\cos \theta=-\frac{2}{3}$ and"
page 46 Exercise 2A. 3
2 first line should be: "Find real numbers x and y if:"
page 50 Exercise 2B. 1
first line of page should be:
"Notice that $\overline{z_{1}+z_{2}+z_{3}}=\overline{z_{1}+z_{2}}+\overline{z_{3}} \ldots$."
page 65 Complex sets and their graphs
first diagram should be:

page 66 Example 30
diagram should be:

page 66 Example 31
on the diagram, the equation of the line should be labelled as $y=-x$
page 67 Exercise 2E
$\mathbf{8} \mathbf{b} \quad$ End of question should be " $x>2$ ", not " $x \geqslant 2$ "
$9 \quad \theta$ is any angle in $0 \leqslant \theta \leqslant 2 \pi$.
page 74 Exercise 2G. 2
5 a the n roots of $z^{n}=1$ are $1, w, w^{2}, w^{3}, \ldots, w^{n-1}$

page 84 Exercise 3B. 1

the blue box at the bottom of the page should read:
$\frac{P(x)}{a x^{2}+b x+c}=Q(x)+\frac{e x+f}{a x^{2}+b x+c}$
page 95 Example 20
the last line of the solution should read:

$$
=(x-2)(x+\sqrt{3})(x-\sqrt{3})
$$

page 96 Example 20
the last line of the solution should read:

$$
=(x-2)(x+\sqrt{3})(x-\sqrt{3})
$$

page 99
on the first diagram on the page the x-intercept should be at -1

page 103 Example 25

question should start "Find the quartic which..."

page 107 Exercise 3G. 2

3 the last line of the question should be: "using $P(2-3 i)=0$ "

page 109 Exercise 3H

3 b question should start:
"Explain why $(3-2 w)\left(3-2 w^{2}\right)=19 \ldots$.."
page 112 Example 32
a last line should read " $\left|z_{4}\right|=0.4072 "$
page 113 Example 32
b last line should read " $\left|z_{4}\right|=9.866$ "
c last line should read " $\left|z_{4}\right|=25.9044$ "
page 115 Example 33
b second line should read " $\left[2 \operatorname{cis}\left(-\frac{\pi}{6}\right)\right]^{2}=4 \operatorname{cis}\left(-\frac{\pi}{3}\right) "$
page 116 Exercise 3J. 2
5 d last line of question should be " $n=0,1,2,3,4,5$ or 6 "
page 120 Example 36
a last line should be:
$" \therefore c=\frac{1}{2}+\frac{1}{2} i$ is not a member of the Mandelbrot set."
b last line should be:
$" \therefore c=-1.940799807$ is a member of the Mandelbrot set..."

page 136 Example 10

the end of the first line of the question should be "Find \mathbf{x} if:"
page 143
text in blue highlight box at bottom of page should be:
projection vector of \mathbf{a} on \mathbf{b} is $\left(\frac{\mathbf{a} \mathbf{b}}{|\mathbf{b}|}\right) \frac{\mathbf{b}}{|\mathbf{b}|}$
where $\frac{|\mathbf{a} \mathbf{a}|}{|\mathbf{b}|}$ is the length of the projection vector
and $\frac{\mathbf{b}}{|\mathbf{b}|}$ is the unit vector in the direction of \mathbf{b}
page 144
the proof at the top of the page should be as follows:

In triangle $\mathrm{PQR}, \quad \cos \theta=\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{\mathrm{PQ}}{|\mathrm{a}|}$
$\therefore P Q=|\mathbf{a}| \cos \theta$
$\therefore \quad P Q=\frac{|\mathbf{a}||\mathbf{b}| \cos \theta}{|\mathbf{b}|}$
$\therefore P Q=\frac{\mathbf{a} \mathbf{a} \mathbf{b}}{|\mathbf{b}|}$
Now, the projection vector is in the same direction as \mathbf{b}, so its unit vector is $\frac{\mathbf{b}}{|\mathbf{b}|}$.
\therefore the projection vector of \mathbf{a} on \mathbf{b} is $\mathrm{PQ} \times \frac{\mathbf{b}}{|\mathbf{b}|}=\left(\frac{\mathbf{a} \mathbf{b}}{|\mathbf{b}|}\right) \frac{\mathbf{b}}{|\mathbf{b}|}$.
(continued next page)

If θ is obtuse

In triangle $\mathrm{PQR}, \quad \cos \left(180^{\circ}-\theta\right)=\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{\mathrm{PQ}}{|\mathrm{a}|}$
$\therefore \quad \mathrm{PQ}=|\mathbf{a}| \cos \left(180^{\circ}-\theta\right)$
$\therefore \mathrm{PQ}=-|\mathbf{a}| \cos \theta$
$\therefore \quad \mathrm{PQ}=-\frac{|\mathbf{a}||\mathbf{b}| \cos \theta}{|\mathbf{b}|}$
$\therefore P Q=-\frac{\mathbf{a} \cdot \boldsymbol{b} \mid}{|\mathbf{b}|}$
Now, the projection vector is in the opposite direction to \mathbf{b}, so its unit vector is $-\frac{b}{|b|}$.
\therefore the projection vector of \mathbf{a} on \mathbf{b} is $\mathrm{PQ} \times-\frac{b}{|b|}=\left(-\frac{\mathrm{a} b}{|b|}\right)\left(-\frac{b}{|b|}\right)$

$$
=\left(\frac{a \cdot b}{|b|}\right) \frac{b}{|b|} .
$$

Note that in both cases $\mathrm{PQ}=\frac{|\mathbf{a b b}|}{|\mathbf{b}|}$.
page 144 Example 17
c the projection vector of \mathbf{b} on $\mathbf{a}=\left(\frac{\mathbf{b} \mathbf{a}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}$
page 153 Exercise 4G. 2
5 c question should read:
"prove that $\mathbf{a}+\mathbf{b}=k \mathbf{c}$ for some scalar k "
page 167 Exercise 4J
14 Equation of plane in diagram and question should be: $" A x+B y+C z+D=0 "$
page 176
under the section dealing with midpoints the third
line of the proof should be $\quad "=\mathbf{a}+\frac{1}{2}(-\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}) "$
page 182 Exercise 5A. 3
1 In the diagram, vector a should go from O to A .
page 192 Exercise 5B. 1
1 e $X Y$ is parallel to $T Z$
page 194 Exercise 5B. 1
11 Last line of the question should read: "that triangle XYC has constant perimeter."
page 203 Review Set 5B
4 On the diagram the point O should be labelled D.
page 214 Example 3
c second line of solution is missing. it should be: \therefore range $=x(5.954)-x(0)=150.85-2=148.85 \mathrm{~m}$
page 215 Exercise 6C. 1
1 c question should be: "How far from the line at $x=0$ is the tip of the javelin when it is released?"
page 217
First paragraph after step 3 should be:
"As t takes all values..."
The Bézier curves demo on the student CD produces incorrect results. A corrected version of this demo can be downloaded from our website (www.haeseandharris.com.au).

page 223 Exercise 6D

5 a should be "Find the initial position of P."
c should start "Explain why $|\mathbf{v}|=R w \ldots$..."
page 227
first line of indented section of text should read:
"Likewise, $\frac{d y}{d t}$ is the rate at which B moves upwards."

page 232 Exercise 6F

10 third line of the problem should state:
"Michael starts walking westwards from B at $3 \mathrm{~ms}^{-1}$ "
page 232 Review Set 6A
1 b question should be:
"The speed of P is constant at $\sqrt{13} \mathrm{~cm} / \mathrm{s}$. Find a."

page 234 Review Set 6C

6 third line of problem should end:
" 3 seconds after A passes through X."
page 237
third line from bottom of page should be:
$"=\sin x(0)+\cos x(1) \quad\left\{\right.$ as $\left.h \rightarrow 0, \cos h \rightarrow 1, \frac{\sin h}{h} \rightarrow 1\right\} "$
page 238
Top of page, Method $1:$, third line should be:
$\because \quad y=\sin u$ where $u=\frac{\pi}{2}-x$ "

page 250 Exercise 7C

8 the flywheel rotates in a clockwise direction
page 258
the integral in both highlighted boxes should be \int_{a}^{b}

page 264 Review Set 7A

7 AM and BM are 1 km , not AP and BP .

page 267 Review Set 7D

7 a Equation should be:

$$
E(\theta)=\frac{d j_{1}}{\cos \theta}+(l-d \tan \theta) j_{2}, j_{1}>j_{2}
$$

page 281
highlighted box should be:
"if $\frac{d y}{d x}=f(x)$ then $y=\int f(x) d x$ "

page 293 Exercise 8E. 1

7 the question should begin:
"A body moves to the right..."
page 294 Example 18
the worked solution should begin:
$q=-2 \pi k r \frac{d T}{d r}$
$\therefore \quad 680=-2 \pi(0.2) r \frac{d T}{d r}$
$\therefore \quad \frac{1}{r}=\frac{-0.4 \pi}{680} \frac{d T}{d r}$
$\therefore \quad \int \frac{1}{r} d r=\int \frac{-0.4}{680} \frac{d T}{d r} d r$
$\therefore \quad \int \frac{1}{r} d r=\int-\frac{0.4 \pi}{680} d T$
$\therefore \quad \int \frac{1}{r} d r=-0.001848 \int 1 d T$
page 297 Example 20
the second line onwards, from the top of the page should read:
$\therefore \quad \frac{v-29.4}{29.4}=-e^{-\frac{t}{3}} \quad($ since $v(0)=0)$
$\therefore \quad v-29.4=-29.4 e^{-\frac{t}{3}}$
page 297 Exercise 8E. 2
6 the third line of the question should be:
"The equation for the motion is $\frac{d v}{d t}=g-4 v \ldots$.."

7 a question should read: "Explaining the symbols used, why is the differential equation $\frac{d V}{d t}=k\left(V_{0}-V\right)$ appropriate?"

page 309 Review Set $\mathbf{8 A}$
1 a question should end:
"... the differential equation $\frac{d^{2} y}{d t^{2}}=-4(y-3)$."
page 312 Review Set 8D
3 last line should end:

$$
" \ldots(y-2)^{2}=e^{x}(y-3) . "
$$

page 316 Opening Problem
in the diagram, the + and - signs are the wrong way round and the second paragraph should begin:
"The extension s, will be positive if the spring is compressed."

page 317 Investigation 1

1 equation should be: " $y=\cos (4 \pi x)$ "
3 equation should be: " $y=\cos (4 \pi x) e^{-x}$ "

page 317 Investigation 2

in the diagram, the + and - signs are the wrong way round
page 333 Investigation 6
the first equation should be:
$" s(t)=s_{0} e^{-\alpha t} \cos (\beta t) "$

page 337-338 Investigation 7

equation for S^{\prime} should be: $S^{\prime}=-\alpha S+D+320$

What to do:

1 By differentiating (2) and using (1), show that a second order DE for the supply function is

$$
S^{\prime \prime}+\alpha S^{\prime}+S=320
$$

2 Write down and solve the characteristic equation corresponding to the second order DE

$$
S^{\prime \prime}+\alpha S^{\prime}+S=0
$$

3 Hence write down the general solution to (4) if:
i $\quad \alpha=1.8$
ii $\quad \alpha=2.0$
iii $\quad \alpha=2.2$

4 Show that if $y_{0}(t)$ satisfies $y^{\prime \prime}+a y^{\prime}+b y=0 \quad$ then $y_{1}(t)=y_{0}(t)+c \quad$ satisfies $\quad y^{\prime \prime}+a y^{\prime}+b y=b c$.
Hence write down a general solution to (3) for each case:
i $\quad \alpha=1.8$
ii $\quad \alpha=2.0$
iii $\quad \alpha=2.2$

By considering the forms of the solutions obtained, predict which value of α is desired by Muhlack and Dangerfield.

5 Show that as $t \rightarrow \infty, S(t) \rightarrow 320$ for each of the general solutions obtained in 4. Explain why this is not surprising.

6 For your chosen value of α :
a Use $S(0)=0$ to evaluate one of the unknown constants.
b Use (2) evaluated at $t=0$ to deduce the remaining coefficient.
c Write down a particular solution for $S(t)$.
d Use (2) to obtain a particular solution for $D(t)$.
e Graph $S(t)$ and $D(t)$ on the same set of axes, and hence check your prediction in 4.

7 If the rate of change of gnome supply was
$S^{\prime}=-\alpha S+\beta D+k, \quad$ where $\beta>0, k$ a constant, what would the desired coefficient α be?
Show that β must equal $\alpha-1$ for supply to match demand at equilibrium. Hint: When does $S^{\prime}=D^{\prime}=0$?
page 341 Investigation 9
4 second equation should be:

$$
" y^{\prime}=-\frac{1}{10} y\left(1-\frac{3 y}{10000}-\frac{x}{50000}\right) "
$$

page 343 Review Set 9A

7 spring constant should be: $k=2.16$

ANSWERS

page 346 Exercise 1C. 1

1 Graphs should have solid circles on their end points at $x=0$ and $x=4 \pi$.

page 347 Exercise 1C. 3

1 a

b

c

d

e

f

g

h

i

j

k

I

page 348 Exercise 1C. 4
1 ai

ii

iii

page 348 Exercise 1E. 1
1 d 5 th number should be 6.3648 .
h $0.2607,1.8337,6.5438$
page 349 Exercise 1E. 2
2 c $\quad 0, \frac{2 \pi}{3}, \frac{4 \pi}{3} \pm k 2 \pi$
d $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6} \pm k 2 \pi$
3 e 11:15 am
page 349 Review Set 1A
8 a all except $x=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi$
page 352 Exercise 2C. 3
$11 \mathbf{b} \quad 0$ if $a \neq 1$, undefined if $a=1$
page 352 Exercise 2D. 3
3 a $|z-1|=2 \sin \frac{\phi}{2}, \arg (z-1)=\frac{\phi}{2}+\frac{\pi}{2}$
b $\quad z-1=\left(2 \sin \frac{\phi}{2}\right) \operatorname{cis}\left(\frac{\phi}{2}+\frac{\pi}{2}\right)$
c $\overline{z-1}=\left(2 \sin \frac{\phi}{2}\right) \operatorname{cis}\left(-\frac{\phi}{2}-\frac{\pi}{2}\right)$
page 352 Exercise 2D. 4
4 a $\quad a\left(x^{2}+2 x+4\right)=0, a \neq 0$
b $\quad a\left(x^{2}-2 x+2\right)=0, a \neq 0$
page 354 Exercise 2E
$9 \quad r=\theta, 0 \leq \theta \leq 2 \pi$

page 355 Exercise 2G. 2
1 a iii $\quad z=\frac{1-w^{n}}{2}$, where $n=0,1,2$ and $w=\operatorname{cis} \frac{2 \pi}{3}$ 4 c $\quad 1-w^{5}$
page 357 Exercise 3C
$5 \mathbf{b} \quad P(z)=a(z+2)\left(z^{2}+1\right) \quad a \neq 0$
page 359 Exercise 3J. 2
5 b 3 cycle
c 3 cycle
page 359 Exercise 3J. 3
1 a ii $\quad 0 \leftrightarrow-1$ is the 2 -cycle

$$
\begin{array}{ll}
\text { b i } & \frac{1}{2} \pm \frac{\sqrt{33}}{6}
\end{array}
$$

page 359 Exercise 3J. 4
$1(-1,0)$
page 359 Review Set 3A
$4 a=7, b=0$ or $a=4, b= \pm \sqrt{3}$
page 361 Exercise 4A
1 d

page 362 Exercise 4B
2 a $\quad \overrightarrow{\mathrm{AB}}=[4,-1,-3] \quad \overrightarrow{\mathrm{BA}}=[-4,1,3]$
page 363 Exercise 4F
9 a -1
$20-7$

page 363 Exercise 4H

4 a 4 units 3
page 364 Exercise 4H
5 c 9 units 3

page 364 Exercise 4I

$9 \mathbf{a} \quad \mathbf{a}=[2,3,6], \mathbf{b}=[1,1,1]$

page 364 Exercise 4K

$1 \mathbf{b i} \quad a_{1}=a_{2}, \quad b_{1}=b_{2}, \quad c_{1}=c_{2}$
page 365 Review Set 4A
1 c $\quad-\frac{5}{14}[-1,2,3]$
page 365 Review Set 4C
2 a 3 units
page 366 Exercise 5A. 3
$5 \overrightarrow{O N}=\frac{4}{5} \mathbf{a}-\frac{3}{5} \mathbf{b}$
page 366 Exercise 5B. 2
1 a yes \{opposite angles are supplementary\}
b yes \{one side subtends equal angles at the other two vertices\}
c no \{opposite angles are not supplementary\}
d yes \{opposite angles are supplementary\}
e yes \{one side subtends equal angles at the other two vertices\}
f yes \{opposite angles are supplementary\}
page 367 Exercise 6A. 1
1 c $v^{\prime}(t) \doteqdot 5.6952 t^{0.0865}$

page 367 Exercise 6B

$2 \mathbf{d} t=4.2$ hours
page 367 Exercise 6C. 1
4 b $[3,3], 3 \sqrt{2} \mathrm{cms}^{-1}$
e $\sqrt{26} \mathrm{cms}^{-1}$
f maximum speed $9 \sqrt{2} \mathrm{cms}^{-1}$, minimum speed $4.025 \mathrm{cms}^{-1}$

page 368 Exercise 6C. 2

3 c left-most $(-2.552,1.709)$, right-most $(1,2)$
page 368 Exercise 6C. 3
2 a $\quad X(s)=(1-3 s) x_{0}+3 x_{1} s, \quad Y(s)=(1-3 s) y_{0}+3 y_{1} s$
page 368 Exercise 6D
3 c arc length l from $(R, 0)=R(\phi+t) \ldots$.
$5 \mathbf{b} \quad \mathbf{v}=k[-R \sin (w t+\phi), R \cos (w t+\phi)]$
page 368 Exercise 6E. 1
1 g $\quad(x-1)(2-y)=6$
page 368 Exercise 6E. 2
$2 \mathbf{b} \quad 7 x-2 y=78$

page 368 Exercise 6F

2 a moving to the right at 1 unit per second
$\mathbf{2} \mathbf{b}$ moving to the right at 10000 units per second
page 369 Review Set 6A
1 c

2 a $y=\frac{1}{9}\left(x^{2}-9 x+18\right)$ for $x \geqslant 3$
b $(3,0)$

page 369 Review Set 6B

2 b $(-15,7)$ and $(-3,1)$
6 a $\quad V(r)=\frac{1}{3} \pi r^{2}\left(\frac{8 r}{3}\right)=\frac{8 \pi}{9} r^{3}$
b $\quad \frac{d r}{d t}=-\frac{8}{375 \pi} \mathrm{~m}$ per minute

page 369 Review Set 6C

1 a X23 $\quad x_{1}=2+t, y_{1}=4-3 t, t \geqslant 0$
b Y18 $\quad x_{2}=11-(t-2), y_{2}=3+a(t-2), t \geqslant 2$
c intercept occured at $2: 22: 30 \mathrm{pm}$
d true bearing of $192.7^{\circ}, 4.540$ units per minute
4 a $\quad X(t)=-1.125-1.25 t, Y(t)=-2+5 t$
b ii $k=-22.5$
$6 \quad 3.601 \mathrm{~ms}^{-1}$
page 369 Exercise 7A. 1
7 a rising
b rising at 2.731 m per hour
8 a $\quad-34000 \pi$ units per second
page 371 Exercise 7C
8 b $\quad 100 \pi$ radians per second

page 371 Exercise 7D. 2

7 c $\quad-\ln |\cos x|+c$
page 372 Exercise 7D. 5
26.283 units 2

page 372 Review Set 7C

7 c increasing at 0.05 units per second

page 372 Review Set 7D

1 b $\frac{d y}{d x}=\frac{-y \cos x}{\sin x+2 y}$
page 373 Exercise 8A. 1
1 a $\quad P_{0}=10^{6}$
b i $\quad 2 P_{0}=2 \times 10^{6}$
b ii $\quad 4 P_{0}=4 \times 10^{6}$
b iii $\quad 64 P_{0}=6.4 \times 10^{7}$

page 373 Exercise 8A. 2

$1 \mathbf{c} \quad$ as $t \rightarrow \infty, S \rightarrow 36.31 \mathrm{gms}$
3 a $\quad 3 \frac{d Q}{d t}+\frac{Q}{7}=6$
b $\quad k=-\frac{1}{21}, c=42$
c $\quad a=-42$
d as $t \rightarrow \infty, Q(t) \rightarrow 42$ coulombs
e

page 374 Exercise 8D. 1
2 c $t=6 y^{\frac{1}{2}}+26$
4 a $p=\frac{10}{e}$
page 374 Exercise 8D. 2
$3 y=e^{-x^{2}}$

$$
y^{2}=x^{2}-9, a= \pm 3 \sqrt{2}
$$

page 374 Exercise 8E. 1

$3 \quad \$ 1537.41,<847$ plates
page 374 Exercise 8E. 2
1 a $399.8^{\circ} \mathrm{C}$
b $\quad 0.3867 \mathrm{~m}$
c $\quad 0.1867 \mathrm{~m}$
10 a $\quad I=2+A e^{-\frac{100}{3} t}$
b $\quad I=2\left(1-e^{-\frac{100}{3} t}\right)$
page 374 Exercise 8F
$1 \mathbf{d i} 41$ years
3 c $t \doteqdot 6.089 \times 10^{-5}$
page 375 Review Set 8A
$5 y^{2}=20-4 e^{x}$
7 c $\quad t \doteqdot 2.057$ years
page 375 Review Set 8B
3 b $\quad 0.02479 \mathrm{~m}$
4 a $\quad \frac{d N}{d t}=k N$
6 a $\quad y=1-\frac{2}{x^{2}+4 x+1}$
b vertical asymptotes $x=-2 \pm \sqrt{3}$
page 375 Review Set 8D
5 a $\quad P(t)=\frac{2550}{1+7.226 e^{-0.1330 t}}$
b $\quad t=14.87$ years
c $\quad P=\frac{2550}{1+7.380 e^{-0.1330 t-0.02116 \cos 2 \pi t}}$

d The student's initial model predicts the long-term population behaviour just as well as the modified model (seen from the graph with $0 \leqslant t \leqslant 50$). However, (as seen from the graph with $0 \leqslant t \leqslant 3$) the modified model accounts for the small-scale detail of seasonal fluctuations that the initial model lacks.
page 375 Exercise 9A. 3
$5 \quad I(t)=I_{p} \cos \left(t+\frac{3 \pi}{2}\right)$
$V(t)=2 I_{p} \sin \left(t+\frac{3 \pi}{2}\right)$
page 375 Exercise 9B. 1
2 a line 2 should be "if $w \neq 0, y=A e^{w t}+B e^{-w t}$ ",
page 375 Exercise 9B. 2
1 a $y(t)=3 e^{2 t}+4 e^{-t}$
$2 \mathbf{b} \quad y(t)=4-3 e^{3 t}$
page 376 Exercise 9C. 2
4 bi $\quad \alpha=\beta=0: x(t)=A+B t$

$$
\alpha=\beta \neq 0: x(t)=A \cos \alpha t+B \sin \alpha t
$$

4 b ii $\quad \alpha=0$ or $\beta=0: x(t)=A+B t$
$\alpha \neq 0$ and $\beta \neq 0: x(t)=A \cos t \sqrt{\alpha \beta}+B \sin t \sqrt{\alpha \beta}$

page 376 Exercise 9C. 3

6 second line should be:

$$
y(t)=e^{-t}(2 \cos 3 t-2 \sin 3 t)
$$

page 376 Review Set 9B

4 b i when $\alpha \delta-\gamma \beta<0$
ii when $\alpha \delta-\gamma \beta>0$
7 second line of solution should be: $v(t)=4 \cos 0.9 t-2.7 \sin 0.9 t$
8 a $\quad A(t)=\frac{720}{17}-\frac{380}{17} e^{-1.7 t}$ $B(t)=\frac{380}{17} e^{-1.7 t}+\frac{640}{17}$

